
Talk given at the ICCA 10   Tartu (Estonia) August 7th, 2014 

 1

HOW TO EXPLAIN AFFINE POINT GEOMETRY1 
 

Ramon González Calvet 
Institut Pere Calders 

Campus Universitat Autònoma de Barcelona 
08193 Cerdanyola del Vallès 
rgonzalezcalvet@gmail.com 

 
Abstract 
 
Hermann Grassmann based his extension theory on Möbius’ barycentric calculus 

[1]. According to Grassmann, a line is the exterior product of two points, a plane is the 
exterior product of three points, and an extension having what we now call n dimension 
is the exterior product of n+1 points [2]. Also, the exterior product of a line and a point 
is a plane, and the exterior product of two non-intersecting lines is the affine space. 
How should we explain this Grassmann’s point geometry to our pupils instead of the 
usual vector geometry? The algebraic way to teach it [3] is by using barycentric and 
homogeneous coordinates [4]. It will be shown that they have many advantages such as 
the natural introduction to projective geometry and duality, which become trivial when 
they are understood by means of pencils of lines and sheaves of planes. 
 

 
The affine space 
 
The affine space nA  with dimension n is a set { }+,, nn VE  where nE  is a point 

space and nV  a vector space of dimension n and +  is the 
affine mapping: 

 

( ) vPQvP
EVE
+=→

→×+
,

:
 

 
 The affine mapping maps a point P and a vector v into another point Q obtained 
from P by means of the translation given by the vector v (figure 1). Then, the translation 
which maps the point P into the point Q is obtained by subtraction of their coordinates: 
 
 PQv −=  

 
 
Coordinate systems in the three-dimensional affine space 
 
A coordinate system is a set { }321 ,,; eeeO , where O is a point of the geometric 

space 3E  called the origin of coordinates and { }321 ,, eee  are three independent vectors 
of the three-dimensional space 3V . By using the affine mapping, any point P of the 
geometric space is written in a unique way as: 

 

                                                 
1 This talk was given at the 10th International Conference on Clifford Algebras and their Applications in 
Mathematical Physics (ICCA 10) held in Tartu (Estonia) from August 4th to 9th, 2014 during the 
workshop Geometric Algebra in the High School and Undergraduate Curriculum. 

Figure 1 
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321 ezeyexOP +++=  ⇔ 321 ezeyexOP ++=  R∈zyx ,,  
 

where OP is the position vector of P. The components ( )zyx ,,  are called the 
coordinates of P in the coordinate system { }321 ,,; eeeO 2.  

Four non-coplanar points { }CBAO ,,,  of the three-dimensional space (figure 2) 
always determine a coordinate system with O as the origin and basis vectors: 

 
OAe =1  OBe =2  OCe =3  

 
By substitution of the basis vectors in the equation of the coordinate system we have: 
 
 OCzOByOAxOP ++=  
 
and undoing vectors into points we have: 
 
 ( ) CzByAxOzyxP +++−−−= 1  R∈zyx ,,  3,,,, R∈PCBAO  
 
where ( )zyxzyx ,,,1 −−−  are the barycentric 
coordinates. That is, any point in the geometric 
space is equal to a linear combination of the 
four basis points whose coefficients’ addition is 
the unity. On the other hand, any vector can be 
written as a linear combination of four non 
coplanar points whose coefficients’ addition is 
the zero: 
 
 ( ) CzByAxOzyxv +++−−−=  
 
    321 ezeyexOCzOByOAx ++=++=  
 
 

Points at infinity 
 
A point R on the line PQ  can be written as ( ) QkPkR +−= 1 , where k is its 

barycentric coordinate on the line PQ . If 0=k  then PR = . If 1=k  then QR = . If 
10 << k  then R runs over the points on the segment PQ (figure 3). 

 

                                                 
2 Here x, y, z are coordinates given in a generic coordinate system that is not necessarily orthonormal. 
Since we set aside the notion of perpendicularity, all the equations here outlined have general validity for 
any coordinate system. 

Figure 2 

Figure 3 
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If ∞=k  then R is a point at infinite distance from P and Q, that is, a point at 
infinity. In this case, the unity can be disregarded in comparison with infinity so that we 
can write: 
 
 QkkPR +−=   ∞→k  
 

Then, the characteristic of the points at infinity is the fact that the addition of 
their coordinates is zero. 

 
 

Homogeneous coordinates 
 
The homogeneous coordinates allow us to incorporate the points at infinity. 

Points at infinity are distinguished from points at a finite distance from the barycentre of 
the point basis because the addition of their point coordinates is zero. Therefore, their 
coordinates cannot be normalized. It is then assumed that the coordinates can be 
multiplied by any factor k and they continue to represent the same point: 

 
( ) ( )( )kzkykxzyxkzyxzyx ,,,1,,,1 −−−=−−−   { }0−∈Rk  
 
For instance ( ) ( )2.0,2.0,6.0,4.01,1,3,2 −=− . The addition of the latter 

coordinates is the unity so that they are barycentric and they correspond to the Cartesian 
coordinates ( ) ( )2.0,2.0,6.0,, −=zyx . On the other hand the point ( )1,1,6,4 −Q  is a 
point at infinity because the addition of their homogeneous coordinates is null. It is the 
point located in the direction of the vector: 

 
3216664 eeeOCOBOACBAOQ ++−=++−=++−=  

 
If we multiply the coordinates of P by any constant, the corresponding vector is 

multiplied by the same constant, but the point at infinity does not change because 
vectors that are proportional indicate the same direction, that is, the same point at 
infinity. 

 
 

        Basis of extensions with higher grades 
 
The fundamental tetrahedron 

OABC also defines a basis of lines and planes. 
The lines { }ACBCABOCOBOA ,,,,,  
containing the edges of the tetrahedron are a 
basis for all the lines of the space (figure 4). In 
the same way, the planes containing the 
tetrahedron faces { }ABCOACOBCOAB ,,,  
are a basis for the planes in the space as I 
explain below. 

The plane OAB  has the equation 
0=z ; the plane OBC  has the equation 0=x ; the plane OAC  has the equation 0=− y  

Figure 4 
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and the plane ABC  has the equation ( )01 =−−−− zyx . We have taken the same 
orientation of the planes in order to give consistence.  

 
 
The exterior product of points 
 
According to Hermann Grassmann, the exterior product of two points yields a 

line. Let us think of a line passing through points P  and Q . We can arrange their 
barycentric coordinates in a matrix: 

 










QQQQ

PPPP

zyxt
zyxt

  where zyxt −−−= 1  

 
The exterior product of both points is then: 
 

BC
zy
zy

AC
zx
zx

AB
yx
yx

OC
zt
zt

OB
yt
yt

OA
xt
xt

PQ
QQ

PP

QQ

PP

QQ

PP

QQ

PP

QQ

PP

QQ

PP +++++=

 
 
Of course, P  or Q  can be exchanged for some linear combinations of them and 

the new matrix still represents the same line: 
 

( ) ( ) ( ) ( ) 







+−+−+−+− QPQPQPQP

PPPP

zzyyxxtt
zyxt

λλλλλλλλ 1111
 

 
Observe that all the determinants are proportional under this change: 
 

( ) ( ) QQ

PP

QPQP

PP

xt
xt

xxtt
xt

λ
λλλλ

=
+−+− 11

 

 
That is, we obtain now an exterior product with proportional components. Of 

course, the sum of the components of the original exterior product PQ  is not the unity 
and they are therefore homogeneous coordinates. In order to obtain barycentric 
coordinates for lines, we must divide the calculated components by their addition. In 
conclusion, any points on a given line may be used and their exterior product gives the 
decomposition of the lines in the line basis of the space in a unique way. 

Let us see an example. Let r be the line passing through the points P(2, 0, −3) 
and Q(3, −1, 4). Let us write the matrix of  the barycentric coordinates of the line: 
 

 








−−

−
=

4135
3022

r

CBAO
 

 
Then we have the minors: 
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 OA   →  16
35
22

=
−

  OB   →  2
15

02
−=

−−
 OC → 7

45
32

−=
−

−
 

 

 AB   → 2
13

02
−=

−
  AC  →  17

43
32

=
−

  BC  → 3
41
30

−=
−

−
 

 
The exterior product of P by Q has as components the minors of the matrix: 
 
 BCACABOCOBOAPQr 31727216 −+−−−==  
 
The coefficients of this decomposition are homogeneous coordinates of r for the line 
basis { }BCACABOCOBOA ,,,,, . We must divide by the sum of the coefficients in 
order to obtain the barycentric coordinates of r for this line basis:  
 

 BCACABOCOBOAPQr
19
3

19
17

19
2

19
7

19
2

19
16

−+−−−==  

 
 Therefore its barycentric coordinates are: 
 

 





 −−−−=

19
3,

19
17,

19
2,

19
7,

19
2,

19
16PQ  

 
  

Sheaves of planes 
 
Let us consider a line r given by the intersection of two planes 1π  and 2π : 
 





=+++
=+++

0:
0:

:
2

1

s'zr'yq'xp'
szryqxp

r
π
π

 

 
A linear combination of both equations yields another plane containing the line:  
 
( ) ( ) ( ) 01 =+++++++− s'zr'yq'xp'szryqxp λλ  
 
The set of all the planes having this 

equation are the sheaf of planes of this line 
(figure 5). By repeating the linear combinations 
with other planes, we can interpret a plane as a 
linear combination of four non coplanar planes. 
For instance, let us consider the plane 

0632: =+−+ zyxπ , whose equation is a 
linear combination of the equations of the 
planes 1π  and 2π : 

 

Figure 5 
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



=+−
=+

06:
032:

2

1

z
yx

π
π

 

 

21 πππ +=  or 
2

21 ππ
π

+
=  in barycentric coordinates 

 
Therefore, π  belongs to the sheaf of planes of the line intersection of 1π  and 

2π . On the other hand, 1π  is a linear combination of the planes 0=x  and 0=y  so that 

1π  belongs to the sheaf of planes of the z-axis OC  (figure 3). 
 

 
 
Barycentric equation of a plane 
 
The Cartesian equation of a plane is: 
 

0=+++ szryqxp   R∈srqp ,,,  
 
By using barycentric coordinates we have: 
 

( ) ( ) ( ) ( ) 01 =++++++−−− zsrysqxspzyxs  
 
which is a linear combination of the equations of the planes of the four faces of the 
fundamental tetrahedron: 
 

01 =−−− zyx   0=x   0=y   0=z  
 
A proportional equation represents the same plane, so that the coefficients of this 

linear combination are homogeneous coordinates. Dividing by the sum of coordinates 
we have: 

 
( ) ( ) 011 =+++−−−−−− zcybxazyxcba  
 

with  
srqp

spa
4+++

+
=  

srqp
sqb

4+++
+

=  
srqp

src
4+++

+
=  

 
We can write cbao −−−= 1 . Then: 
 
 ( ) 01 =+++−−− zcybxazyxo   1=+++ cbao  
 
Then [ ]cbao ,,,  are the barycentric coordinates of the plane in the vector space of the 
planes with the plane basis { }0,0,0,01 ====−−− zyxzyx . They are the dual 
coordinates. The plane is a point in the vector space of the planes. Its Cartesian 
coordinates are [ ]cba ,, . 
 Let us see an example. Let us take the plane: 
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03452 =++− zyx  ⇔ ( ) 072513 =+−+−−− zyxzyx  
 
The sum of the homogeneous dual coordinates are 137253 =+−+ . Therefore, 

the plane equation can be written as: 
 

( ) 0
13
7

13
2

13
51

13
3

=+−+−−− zyxzyx  

 
and the barycentric dual coordinates are [ ]13/7,13/2,13/5,13/3 − . Its Cartesian dual 
coordinates are [ ]13/7,13/2,13/5 − . 
 
 
 Matrix equation of a line 
 
 A line is the intersection of two planes. In barycentric coordinates: 
 

( )
( )




=+++−−−
=+++−−−

01
01

zc'yb'xa'zyxo'
zcybxazyxo

 

 
 We can write this equation system in matrix form: 
 

 ( ) 01 =



















−−−

c'c
b'b
a'a
o'o

zyxzyx  

 
 Both are matrices, but parentheses indicate point coordinates and square brackets 
indicate dual coordinates. Any point on the line will fulfil this equation, so that we can 
add another point: 
 

 0
1
1

=



























−−−
−−−

c'c
b'b
a'a
o'o

z'y'x'z'y'x'
zyxzyx

 

 
Putting zyxt −−−= 1  we have: 
 

 0=




























c'c
b'b
a'a
o'o

z'y'x't'
zyxt

 

 
 
This is the matrix equation of a line. On the other hand, note that there is no 

need for the addition of coordinates to be the unity so that we can also use 
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homogeneous coordinates. If we change any row of the first matrix by a linear 
combination of both rows, the equation is preserved. This algebraic operation consists 
of the substitution of the first point by another point on the line. If we change any 
column of the second matrix by a linear combination of both columns, the equation is 
also preserved. This algebraic operation consists of the substitution of the first plane by 
another plane of the sheave of planes of the line. 

 
 
Decomposition of a line given two planes containing it 
 
We can find out the components of a line for the line basis from the planes 

determining it instead of taking two points on the line. I have proven that this 
decomposition yields exactly the same result provided that the suitable correspondence 
between planes and their equations is taken. 

Let us take the line of the former example of decomposition, which passes 
through the points P(2, 0, −3) and Q(3, −1, 4). Its direction vector is 

( )7,1,1 −=−= PQv  so that the continuous equation of the line is: 
 

7
3

11
2 +

=
−

=
− zyx  

 
Separating both equalities we obtain two planes: 
 





=++
=−+

037:
02:

:
2

1

zy
yx

r
π
π

 

 
Let us pass to barycentric coordinates: 
 

( )
( )




=+++−−−
=−−−−−−−

0410313:
0212:

:
2

1

zyxzyx
zyxzyx

r
π
π

 

 
Therefore the matrix form of r  in dual coordinates is: 
 

0
0
0

01

42
101
31
32

=
=
=

=−−−



















−
−
−
−

=

z
y
x

zyx

r  

 
The equation of each plane is indicated on the right. If we make the exterior product of 
the dual coordinates of both planes we will obtain the decomposition of the line in the 
line basis. Each line of the basis is the intersection of two of the fundamental planes. In 
order to determine the sign of the fundamental line that corresponds to a pair of plains, 
we can apply the screw rule: when turning the vector perpendicular to the first plane 
towards the vector perpendicular to the second plane as it were the head of a screw, the 
sense of advancement of this screw will be the sense of the resulting line. For example, 
the intersection of the planes 0=x  and 0=y  gives as a result the line OC  because 
when turning the screw top from OA up to OB the screw will move in the sense of OC 
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(figure 6). The intersection of the planes 01 =−−− zyx  and 0=x  gives as a result the 
line BC  because when turning the screw top from the vector OCOBOA −−− , 
perpendicular to the first plane, up to the vector OA the screw will move in the sense of 
BC (figure 7): 
 
 

 
 
Let us calculate the minors: 
 

BC : 3
31
32

0
01

−=
−
−

→




=
=−−−

x
zyx

 AC− : 17
101
32

0
01

−=
−
−

→




=
=−−−

y
zyx

 

 

AB : 2
42
32

0
01

−=
−
−

→




=
=−−−

z
zyx

 OC : 7
101
31

0
0

−=
−
−

→




=
=

y
x

 

 

OB− : 2
42
31

0
0

=
−
−

→




=
=

z
x

  OA : 16
42

101
0
0

=
−
−

→




=
=

z
y

 

 
which yields the decomposition: 
 

BCACABOCOBOAr 31727216

4
10
3
3

2
1
1
2

21 −+−−−=



















∧



















−
−
−
−

=∩= ππ  

 
Although the components are the same as those obtained by means of the exterior 
product of two points on the line, in general we expect to obtain only proportional 
components because they are homogeneous coordinates. When passing to barycentric 
coordinates we will have the same expression as before: 
 

 BCACABOCOBOAr
19
3

19
17

19
2

19
7

19
2

19
16

−+−−−=  

 

Figure 7 Figure 6 
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 That is, the decomposition of a line for a basis of lines is unique, and the same 
result is obtained from two points on the line or from two planes whose intersection is 
the line. I have already proven this theorem in [5] from the matrix equation of the line. 
 
 
 Meet and join operators 
 

Given two subspaces 1S  and 2S  of the point space nE , the meet ∩  operator of 
the projective geometry [6] is defined as the set of points belonging simultaneously to 
both subspaces. For instance, 21 ππ ∩  is the line intersection of both planes. Note that 
we have obtained this line from the exterior product of dual coordinates. In the same 
way, 321 πππ ∩∩  is the point intersection of the three planes, which can be obtained 
as the exterior product of their dual coordinates. 

In order to make right calculations, the anticommutativity of the exterior product 
of points must be taken into account. How to work in an easy way with the meet 
operator? By cancellation of distinct points when the common points are in the same 
position in each factor: 
 
 OBOBCOBAOBCOAB −=∩−=∩  
 
 OCOACOBC =∩  
 
 OAOACOAB =∩  
 
 ABABCABOABCOAB =∩=∩  
 
 ACACBACOABCOAC −=∩−=∩  
  
 BCBCABCOABCOBC =∩=∩  
 
In the same way: 
 
 OOBCOACOAB =∩∩  
 
 AABCAOCAOBABCOACOAB =∩∩=∩∩  
 
 BBACBOCBOAABCOBCOAB =∩∩=∩∩  
 

CCABCOBCOAABCOBCOAC =∩∩=∩∩  
 
 
Let us see an example. Let us consider the point P given by the intersection of 

three planes: 
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







=−+
=++
=−+

=
4
32

1

zyx
zyx
zyx

P   
( )

( )
( )








=+++−−−
=+++−−−

=+−−−
=

053314
02213

021

zyxzyx
zyxzyx

zzyx
P  

 
Since OBC  has the equation 0=x , OAC  has the equation 0=− y , OAB  has 

the equation 0=z  and zyx −−−1  is the equation of ABC−  we have: 
 



















∧



















∧



















=

5
3
3
4

2
2
1
3

2
0
0
1

P  

 

OABOBCABCOACOBCABC ∩∩−∩∩=
522
310
431

320
310
431

 

 

OABOACOBCOABOACABC ∩∩−∩∩+
522
320
310

522
320
431

 

 

OABC
522
320
310

522
320
431

522
310
431

320
310
431

−+−=  

 
 

OABCP 6693 ++−−=  321 3232 eeeOCOBOAP −−=−−=  
 
That is, P  is a point at infinity located in the direction 321 32 eee −− , which is 

an expected result because two planes are parallel, and their intersection is a line at the 
infinity. 

On the other hand, it has been shown that the exterior product of points 
generates lines and planes, so that it corresponds to the join operator ∪  of the 
projective geometry [6]. Summarizing the exterior product: 

 
∪=∧ )(   [ ] ∩=∧  

  
Therefore Grassmann’s exterior algebra reflects what is already known in 

projective geometry: the meet operator ∩  and the join operator ∪  are each one dual of 
each other. 
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 Projectivities 
 
 The projective geometry only differs from the affine geometry in the fact that 
points at infinity are incorporated to the set of points, and transformations between 
points at infinity and points at a finite distance from the origin of coordinates are now 
admitted. Homogeneous coordinates allow us to work with points whose addition of 
barycentric coordinates is null, which are points at infinity.  

From an algebraic point of view, a projectivity is just a non-degenerate linear 
mapping of the homogeneous coordinates: 
 

 





































=



















z
y
x
t

mmmm
mmmm
mmmm
mmmm

z'
y'
x'
t'

44434241

34333231

24232221

14131211

  0det

44434241

34333231

24232221

14131211

≠



















mmmm
mmmm
mmmm
mmmm

 

 
 Let us prove this assertion in two steps. 

1) Firstly, let us prove that this mapping transforms lines into lines. Let P and Q 
be two points on a line. Then, their transformed points P'  and Q'  will be given by: 
 
 PP' M=   QQ' M=  
 
where M is the matrix of the linear mapping (always with 0det ≠M ). Any linear 
combination of P and Q is a point on the line PQ : 
 
 QPR µλ +=   ⇔ PQR ∈  
 
The transformed point of R under the linear mapping is: 
 
 ( ) Q'P'QPQPRR' µλµλµλ +=+=+== MMMM  
 
Since R'  is a linear combination of P'  and Q' , it always belongs to the line P'Q' . 
Therefore, any line will always be transformed into another line. All these calculations 
are made with homogeneous coordinates, so that there is no need for 1=+ µλ . The 
condition 0det ≠M  guarantees that any four independent points will be mapped into 
another set of four independent 
points, that is, a tetrahedron 
with a non null height will be 
transformed into another 
tetrahedron with a non null 
height. The condition 

0det =M  corresponds to other 
collapsing geometric transfor-
mations that are not properly 
projectivities [7]. 

2) Finally, let us prove 
that this linear mapping 

Figure 8 
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preserves the cross ratio. Let A, B, C and D be four distinct collinear points (figure 8). 
Then we can write C and D as barycentric linear combinations of A and B (barycentric 
coordinates are needed to measure distances on the line): 

 
( ) BAC λλ +−= 1   ( ) BAD µµ +−= 1    { }0, −∈Rµλ  

 
Then we have: 
 

ABACAC λ=−=    ABADAD µ=−=  
 

( )ABBCBC 1−=−= λ   ( )ABBDBD 1−=−= µ  
 
The cross ratio is then: 
 

( )
( )λµ

µλ
−
−

=
1
1

BCAD
BDAC  

 
Under the linear transformation, points A and B become A'  and B' : 
 

AkA' M=  BlB' M=   { }0, −∈Rlk  
 
where k  and l  are constants that are necessary to pass from the homogeneous 
coordinates of A'  and B'  to their barycentric coordinates. The points C and D are 
transformed into C'  and D'  in the same way: 
 
 CmC' M=  DnD' M=   { }0, −∈Rnm   
 
The normalization coefficients m and n are related with k and l as now we see by 
substitution of their barycentric expression: 
 

 ( )[ ] ( ) ( ) B'
l

mA'
k

mBmAmBAmC' λλλλλλ +
−

=+−=+−=
111 MMM  

 
 With barycentric coordinates, the addition of the coefficients of linear 
combination must be the unity: 
 

  ( ) 11
=+

−
l

m
k

m λλ   ⇒ ( )λλ −+
=

1lk
klm  

 
Therefore: 
 

 ( )
( ) ( ) B'

lk
kA'

lk
lC'

λλ
λ

λλ
λ

−+
+

−+
−

=
11

1  

 
Analogously: 
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 ( )
( ) ( ) B'

lk
kA'

lk
lD'

µµ
µ

µµ
µ

−+
+

−+
−

=
11

1  

 
Then the vectors are: 
 

( ) A'B'
lk
kA'C'

λλ
λ

−+
=

1
  ( ) A'B'

lk
kA'D'

µµ
µ

−+
=

1
 

 
( )

( ) A'B'
lk

lB'C'
λλ

λ
−+

−
=

1
1   ( )

( ) A'B'
lk

B'D'
µµ

µ
−+

−
=

1
1  

 
Now the cross ratio of the transformed points has the same value as that of the 

initial points: 
 

( )
( ) BCAD

BDAC
B'C'A'D'
B'D'A'C'

=
−
−

=
λµ
µλ

1
1  

 
Since the cross ratio of collinear points is preserved, this linear transformation is 

a projectivity and the proof ends. 
 A projectivity transforms collinear points into collinear points, which means 

that it must be a linear transformation of the homogeneous coordinates (in order to also 
include points at infinity). The  most general way to write a linear transformation is with 
a matrix product. Therefore, it is not another way to write projectivities. 
 

 
Quadrics 
 
The general equation of a quadric is: 
 

0222 =+++++++++ kjzhygxfyzexzdxyczbyax  
 
By introducing barycentric coordinates it becomes a quadratic form of them: 
 

( ) ( ) xzyxmzmymxmzyxm −−−++++−−− 121 12
2

44
2

33
2

22
2

11  
 
 ( ) ( ) 02221212 3424231413 =+++−−−+−−−+ yzmxzmxymzzyxmyzyxm  
 
 In matrix form: 

 

( ) 0

1

1

44342414

34332313

24232212

14131211

=

















 −−−



















−−−

z
y
x

zyx

mmmm
mmmm
mmmm
mmmm

zyxzyx  
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That is, a quadric is the kernel of a bilinear mapping. The matrix of a quadric is 
always symmetrical, and hence it can be passed to diagonal form: 

 

( ) =

















 −−−



















−−−

z'
y'
x'

z'y'x'

z'y'x'z'y'x'

1

000
000
000
000

1

4

3

2

1

λ
λ

λ
λ

 

 
  ( ) ( ) ( ) ( ) 01 2

4
2

3
2

2
2

1 =+++−−−= z'y'x'z'y'x' λλλλ  
 
with   { }0,,, 4321 −∈Rλλλλ . The change to diagonal form is obtained through a 
projectivity: 

 

















 −−−

=

















 −−−

z'
y'
x'

z'y'x'

B

z
y
x

zyx 11

   0det ≠B  

 
The quadric only exists if there are eigenvalues with different signs. The quadric matrix 
is defined up to a non null factor: all the matrices of the form MM k' =   (with 

{ }0−∈Rk ) define the same quadric. 
 
 
 Tangential quadric 
 
 At each point of the quadric there is a plane tangent to it. Each of these planes is 
a point in the dual space, so that the set of all these planes form in the dual space the 
dual or tangential quadric. The matrix of the dual quadric is always the inverse matrix of 
that of the original quadric as I will show now. The equation of a quadric is: 
 

 ( ) 0

1

1 =

















 −−−

−−−

z
y
x

zyx

zyxzyx M  

 
By differentiation we obtain: 
 

( )( ) ( ) 01

1

=

















 −−−

−−−+

















 −−−

++−

z
y
x

zyx

zyxzyx

z
y
x

zyx

zyxzyx

δ
δ
δ

δδδ

δδδδ MM

 
By using the fact that the bilinear mapping is symmetrical, we can transpose matrices in 
the second term, which leads us to: 
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 ( )( ) 0

1

=

















 −−−

++−

z
y
x

zyx

zyxzyx Mδδδδ  

 
The plane being tangent to the quadric in the point ( )000 ,, zyx  has the equation: 
 

( )( ) 0

1

0

0

0

000

000000 =

















 −−−

−−−−+−+−−

z
y
x

zyx

zzyyxxzzyyxx M  

 
that is: 
 

 ( ) 0

1

1

0

0

0

000

=

















 −−−

−−−

z
y
x

zyx

zyxzyx M  

 
because ( )000 ,, zyx  is a point of the quadric and fulfils the equation: 
 

  ( ) 0

1

1

0

0

0

000

000000 =

















 −−−

−−−

z
y
x

zyx

zyxzyx M  

 
The dual coordinates of this plane are the coefficients of the barycentric coordinates in 
the equation of the plane. Let t' , u' , v'  y w'  be these homogeneous dual coordinates: 
 

 

















 −−−

=



















0

0

0

0001

z
y
x

zyx

w'
v'
u'
t'

M  

 
Let X be the matrix of the quadric points and U the matrix of the dual (homogeneous or 
normalized) coordinates: 
 

 

















 −−−

=

z
y
x

xyx1

X   



















=

'
'
'
'

w
v
u
t

U  



Talk given at the ICCA 10   Tartu (Estonia) August 7th, 2014 

 17

 
 
 Then, we have: 
 
 XMU =  
 

M −1 U = X 
 
 XT = UT M −1 
 
because M −1 as well as M are symmetrical and 
do not change under transposition. The 
substitution of X in the equation of the quadric 
XT M X = 0 gives us: 
  

UT M −1 U = 0 
 
So that the proof ends.  
 Let us see an example. Let us consider 
now a one-sheeted hyperboloid with the z-axis 
as its revolution axis (figure 9): 
 
 1222 =−+ zyx  
 
 ( ) 0222222122 222 =+++−−−−−−−+ yzxzxyzyxzyxyx  
   
 ( ) ( )( ) 02221212 22 =−−−++−−−−−−−−− yzxzxyzyxzyxzyxz  
 
 ( ) ( )( ) 02221212 22 =+++++−−−+−−−+ yzxzxyzyxzyxzyxz  
 

 ( ) 0

1

2111
1011
1101
1111

1 =

















 −−−



















−−−

z
y
x

zyx

zyxzyx  

 
  

 



















=

2111
1011
1101
1111

M  ⇒ 



















−
−

−
−

=−

1001
0101
0011
1110

1M  

 
So that the equation of the tangential quadric is: 
 

Figure 9 
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 [ ] 0

1

1001
0101
0011
1110

1 =

















 −−−



















−
−

−
−

−−−

w
v
u

wvu

wvuwvu  

 
 014222422 222 =+−++−+−− wvwuwuvwvu  
 
where [ ]wvu ,,  are the dual coordinates of any plane tangent to the point quadric. For 
instance, let us calculate the plane tangent to the hyperboloid at the point 
( ) ( )1,1,1,, =zyx . By differentiation of the equation of the hyperboloid we find: 
 
 0222 =−+ dzzdyydxx  
 
At the point ( )1,1,1  we have: 
 
 0=−+ dzdydx  
 
Taking finite differences, the equation of the tangent plane π  is: 
 
 ( ) ( ) ( ) 0111: =−−−+− zyxπ  ⇔ 01 =−−+ zyx  
 
Let us introduce barycentric coordinates: 
 
 ( ) 021: =+−−− zzyxπ   ⇔ [ ]2001=π  
 
and let us check that it is a point of the tangential quadric: 
 

 [ ] 0

2
0
0
1

1001
0101
0011
1110

2001 =





































−
−

−
−

  

 
 The tangential quadric only exists if 0det ≠M , which corresponds to proper 
quadrics. For 0det =M  the inverse matrix of M does not exist. This case corresponds 
to degenerate quadrics, such as a pair of planes or a cone. For instance, the degenerate 
quadric: 
 
 ( ) ( ) 012 =+−−+ yxzyx  ⇒ 02 =−+ zyx      or    01 =++ yx  
 
represents two planes cutting on a line. By developing the Cartesian equation we have 
 
 022222 =−++−++− zyxzyzxyx  
 
Let us write it in barycentric coordinates: 
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 ( )( ) ( )( ) 02122222 =++−++−−−−++−++− zyxzyxzyxzyxzyzxyx  
 

( ) ( ) ( ) 012113222 22 =−−−−−−−+−−−+−++− zyxzzyxyzyxxzyzxyxzy  
 
 

( ) 0

1

22/32/11
2/3212/1

2/1102/1
12/12/10

1 =

















 −−−



















−−−
−

−

−−−

z
y
x

zyx

zyxzyx  

 
We se that its determinant is null: 
 
 

 0

22/32/11
2/3212/1

2/1102/1
12/12/10

det =



















−−−
−

−

 

 
and therefore the tangential quadric does not exist. 
 
 
 Measure theory of extensions 
 
 The exterior product of points generate, as we have seen, lines, planes and the 
whole space. However, it is also used to obtain the measure of the extensions among 
these points. According to Peano’s methodology, very well explained in [8], a linear 
operator ω  which maps products of k points into products of 1−k  vectors is defined in 
the following way: 
 
 ( ) ( ) 1: −∧→ k

n
k

n VEω  
 
 ( ) 01 =ω  
 ( ) 1=Pω  
 ( ) 100110 PPPPPP =−=ω  

 ( ) ( ) ( ) 20100201210 PPPPPPPPPPP ∧=−∧−=ω  
 ...  
 
 ( ) ( ) ( ) ( ) nnn PPPPPPPPPPPPP 0100020110 ∧∧=−∧∧−∧−=ω  

 
In fact, as we will now see, it is enough to state ( ) 0110 PPPP −=ω  because linearity 
yields the rest of equalities. 
 For instance, let us see how the exterior product of two points is. Given two 
points 1P  and 2P  given with barycentric coordinates: 
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( ) CzByAxOzyxP 1111111 1 +++−−−=  
 
 ( ) CzByAxOzyxP 2222222 1 +++−−−=  
 
their product is: 
 

OC
zzyx
zzyx

OB
yzyx
yzyx

OA
xzyx
xzyx

PP
2222

1111

2222

1111

2222

1111
21 1

1
1
1

1
1

−−−
−−−

+
−−−
−−−

+
−−−
−−−

=  

  

BC
zy
zy

AC
zx
zx

AB
yx
yx

22

11

22

11

22

11 ++++  

 
Now, by considering the vectorial equalities OAOBAB −= , OAOCAC −=  

and OBOCBC −=  we have: 
 

( ) ( ) ( ) ( )OC
zz
zz

OB
yy
yy

OA
xx
xx

PPPP −
−
−

+−
−
−

+−
−
−

==
22

11

22

11

22

11
2121 1

1
1
1

1
1

ω  

 
 ( ) ( ) ( )OCzzOByyOAxx 121212 −+−+−=  
 
which is the usual expression of a segment given by two points in Cartesian coordinates. 
For our students we would write: 
 

( ) ( ) ( )OCzzOByyOAxxPP 12121221 −+−+−=   
 
Therefore, the exterior product of two points given with barycentric coordinates 
generates the line element not only in direction but also in extension, that is, it generates 
a segment. 
 Let us see the exterior product of three points: 
  

OAC
zxzyx
zxzyx
zxzyx

OAB
yxzyx
yxzyx
yxzyx

PPP

33333

22222

11111

33333

22222

11111

321

1
1
1

1
1
1

−−−
−−−
−−−

+
−−−
−−−
−−−

=  

 

 ABC
zyx
zyx
zyx

OBC
zyzyx
zyzyx
zyzyx

333

222

111

33333

22222

11111

1
1
1

+
−−−
−−−
−−−

+  

 
Since the oriented areas fulfil OCAOBCOABABC ++=  [9] we have: 
 

OBC
zyzy
zyzy
zyzy

OAC
zxzx
zxzx
zxzx

OAB
yxyx
yxyx
yxyx

PPP

3333

2222

1111

3333

2222

1111

3333

2222

1111

321

1
1
1

1
1
1

1
1
1

−−
−−
−−

+
−−
−−
−−

+
−−
−−
−−

=
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OBC
zy
zy
zy

OAC
zx
zx
zx

OAB
yx
yx
yx

33

22

11

33

22

11

33

22

11

1
1
1

1
1
1

1
1
1

++=  

 
After subtracting the first row from the second and third rows in the determinants, we 
obtain: 
 

     OBC
zzyy
zzyy

OAC
zzxx
zzxx

OAB
yyxx
yyxx

PPP
1313

1212

1313

1212

1313

1212
321 −−

−−
+

−−
−−

+
−−
−−

=  

 
which expresses an exterior product of vectors: 
 

3121321 PPPPPPP ∧=  
 
The triangle area equals to half this exterior 
product. 

And finally the exterior product of four 
points given in barycentric coordinates is: 
 

OABC

zyxzyx
zyxzyx
zyxzyx
zyxzyx

PPPP

444444

333333

222222

111111

4321

1
1
1
1

−−−
−−−
−−−
−−−

=  

 
which we can write as:  
  

OABC
zzyyxx
zzyyxx
zzyyxx

OABC

zyx
zyx
zyx
zyx

PPPP

141414

131313

121212

444

333

222

111

4321

1
1
1
1

−−−
−−−
−−−

==  

 
which expresses the volume of the parallelepiped as the exterior product of three of its 
non parallel edges (figure 10): 
 
 4131214321 PPPPPPPPPP ∧∧=  
 
The volume of the tetrahedron is 1/6 of the volume of this exterior product. 
 Grassmann’s extension theory is fully general and independent of the Euclidean 
or pseudo Euclidean character of a given hyperspace of n dimension. In the same way, 
Möbius’ barycentric calculus and the barycentric coordinates use a basis of any points, 
not necessarily located on perpendicular coordinate axes. For a simplex with n vertices 
[10], its extension is given by: 
 

 ( ) nPPP PPP
nn 21!1

1Simplex
21 −

=  

Figure 10 
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where nPPP 21  expresses the exterior product of points given with barycentric 
coordinates. If the affine space containing these points has vectorial dimension lower 
than 1−n , the points are always linear dependent and their exterior product is null. 
Thus, there exist simplexs with n vertices in spaces with vectorial dimension 1−≥ nm . 
For instance, in the room space 3=m  and we can have segments ( 2=n ), triangles 
( )3=n  and tetrahedrons ( )4=n . In the space-time we have besides hypertetrahedrons 
with five vertices ( 5=n ): 
 

 Hypertetrahedron 5432124
1

54321
PPPPPPPPPP =  

 
Its hypervolume is calculated by means of 1/24 of the determinant of its 

barycentric space-time coordinates. 
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